ON p-HYPONORMAL OPERATORS

نویسندگان

  • EUNGIL KO
  • David R. Larson
چکیده

In this paper we show that p-hyponormal operators with 0 / ∈ σ(|T | 1 2 r ) are subscalar. As a corollary, we get that such operators with rich spectra have non-trivial invariant subspaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Commutators of Isometries and Hyponormal Operators

A sufficient condition is obtained for two isometries to be unitarily equivalent. Also, a new class of M-hyponormal operator is constructed

متن کامل

EXTENSIONS OF THE RESULTS ON POWERS OFp-HYPONORMAL AND log-HYPONORMAL OPERATORS

Firstly, we will show the following extension of the results on powers of p-hyponormal and log-hyponormal operators: let n andm be positive integers, if T is p-hyponormal for p ∈ (0,2], then: (i) in case m ≥ p, (Tn+mTn+m)(n+p)/(n+m) ≥ (TnTn)(n+p)/n and (TnTn ∗ )(n+p)/n ≥ (Tn+mTn+m)(n+p)/(n+m) hold, (ii) in case m < p, Tn+mTn+m ≥ (Tn ∗ Tn)(n+m)/n and (TnTn ∗ )(n+m)/n ≥ Tn+mTn+m hold. Secondly, w...

متن کامل

A PUTNAM AREA INEQUALITY FOR THE SPECTRUM OF n-TUPLES OF p-HYPONORMAL OPERATORS

We prove an n-tuple analogue of the Putnam area inequality for the spectrum of a single p-hyponormal operator. Let B…H† denote the algebra of operators (i.e. bounded linear transformations) on a separable Hilbert space H. The operator A 2 B…H† is said to be p-hyponormal, 0 < p 1, if jA j2p jAj2p. Let H…p† denote the class of p-hyponormal operators. Then H…1† consists of the class of p-hyponorma...

متن کامل

On the Hyponormal Property of Operators

Let $T$ be a bounded linear operator on a Hilbert space $mathscr{H}$. We say that $T$ has the hyponormal property if there exists a function $f$, continuous on an appropriate set so that $f(|T|)geq f(|T^ast|)$. We investigate the properties of such operators considering certain classes of functions on which our definition is constructed. For such a function $f$ we introduce the $f$-Aluthge tran...

متن کامل

Existence of Non-subnormal Polynomially Hyponormal Operators

In 1950, P. R. Halmos, motivated in part by the successful development of the theory of normal operators, introduced the notions of subnormality and hyponormality for (bounded) Hilbert space operators. An operator T is subnormal if it is the restriction of a normal operator to an invariant subspace; T is hyponormal if T*T > TT*. It is a simple matrix calculation to verify that subnormality impl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999